您的浏览器不支持JavaScript,请开启后继续
AnalyzationandOptimizationofMicrobrewerySystem(酿造系统分析与优化)

AnalyzationandOptimizationofMicrobrewerySystem(酿造系统分析与优化)

  • 作者
  • (中)申文静(Wenjing Shen)、(德)约翰尼斯·赫尔曼(Johannes Herrmann)、(德)奥利弗·格里尔(Oliver Grill)、(德)托拜厄斯·博雷尔(Tobias Bohrer)、(德)西格弗里德·施拉梅尔(Siegfried Schramme

本书为英文专著,以啤酒酿造过程为背景,介绍了啤酒酿造过程工艺及系统、LabVIEW与OPC协议、过程控制理论、酿造过程温度控制等内容,初步建立基于LabVIEW平台的啤酒酿造数字化工厂的模型,结合智能传感网络对整个生产过程进行仿真、评估、优化和智能控制。 本书可供食品工程、机电、工业技术等行业的科学研究与技术开发人员参考,也可供相关专业大专院校师生阅读。


  • ¥128.00

ISBN: 978-7-122-37153-9

版次: 1

出版时间: 2020-07-01

图书信息

ISBN:978-7-122-37153-9

语种:英文

开本:16

出版时间:2020-07-01

装帧:精

页数:168

内容简介

本书为英文专著,以啤酒酿造过程为背景,介绍了啤酒酿造过程工艺及系统、LabVIEW与OPC协议、过程控制理论、酿造过程温度控制等内容,初步建立基于LabVIEW平台的啤酒酿造数字化工厂的模型,结合智能传感网络对整个生产过程进行仿真、评估、优化和智能控制。
本书可供食品工程、机电、工业技术等行业的科学研究与技术开发人员参考,也可供相关专业大专院校师生阅读。

作者简介

申文静,深圳技术大学中德智能制造学院教师 ,香港城市大学博士毕业,曾获香港政府全额奖学金,2018年获深圳市海外高层次C类人才;研究方向为物理建模和参数优化,工业系统参数智能调节应用; 
主持并参与了多项国家省级自然科学基金和企业横向课题,研究机电一体化系统集成和设备改造;发表国内外期刊论文十余篇,申报国家发明专利八项,国际PCT专利两项。
与德国雷根斯堡应用技术大学合作,负责筹建“中德啤酒酿造过程控制实验室”,主持教育部协同育人项目“啤酒酿造过程控制数字化工厂”,教研项目“中德过程控制联合实验室教学探索与研究”; 已在实验室指导多名德国留学生进行酿造设备自动化改造。计划初步建立基于LabVIEW平台的啤酒酿造数字化工厂的模型,结合智能传感网络对整个生产过程进行仿真、评估、优化和智能控制。

编辑推荐

1.本书以全英文的形式,详细介绍了酿造工艺及过程控制的基本知识及新成果;2.引进德国先进的、自动化的酿酒控制技术,初步建立基于LabVIEW平台的啤酒酿造数字化工厂的模型,对国内的酿酒厂技术人员、管理人员具有参考借鉴价值,有助于促进我国传统酿造行业设备升级改造。

目录

1 Introduction and objective	1

2 General explanation of a brewing process	4
2.1  Ingredients	4
2.1.1  Water	4
2.1.2  Malt	5
2.1.3  Hops	5
2.1.4  Yeast	6
2.2  Work steps for the production of beer	6
2.2.1  Grinding of the malt	7
2.2.2  Mashing	7
2.2.3  Lautering	7
2.2.4  Cooking and addition of hops	8
2.2.5  Hot break separation	8
2.2.6  Cooling of the wort	9
2.2.7  Pitching yeast	9
2.2.8  Fermentation	9
2.2.9  Secondary fermentation and storing	9

3 Description of the brewing plant	11
3.1  Controlling and monitoring of the plant	12
3.2  Four-tank system for the production of wort	13
3.2.1  Mash tank	14
3.2.2  Lauter tank	16
3.2.3  Boiling pot	17
3.2.4  Whirlpool	18
3.3  Fermentation and storage	20
3.3.1  Plate heat exchanger, yeast container and ice water tank	20
3.3.2  Fermentation and storage tanks	21
3.4  Additional components of the brewing plant	22
3.4.1  Cleaning of the fermentation tanks	22
3.4.2  Grinding of the malt	23
3.4.3  Storage of the malt and the hops	24
3.4.4  Production of steam	24

4 Collection of data from the mash tank	26
4.1  Geometrical dimensions	26
4.2  Materials and wall thicknesses	30
4.3  Stirring unit	30
4.4  Heat transfer from the steam to the brewing water	31
4.4.1  Experiments for the distinction of the energy supply by observation of the vapor pressure	32
4.4.2  Calculation of USB	33
4.5  Total heat transmission coeff?icient	35
4.5.1  Experiments for the measurement of the wall temperatures	37
4.5.2  Calculation of ho	39
4.5.3  Calculation of hi	42
4.5.4  Calculation of the total heat transmission coeff?icient	46
4.6  Volume flow of tap water	47
4.7  Summary of the values for the mash tank	48

5 Creation of a flow sheet of the brewing plant	49
5.1  Existing f?low sheet	50
5.2  Newly created f?low sheet	53
5.2.1  Malt milling	54
5.2.2  Steam production	54
5.2.3  Production of wort	58
5.2.4  Cooling of the wort and addition of yeast	59
5.2.5  Cooling water supply	60
5.2.6  Fermentation and storage	60

6 Description of the brewing process	62
6.1  Operation of the plant	62
6.2  Cleaning before the brewing process	65
6.3  Milling	68
6.4  Mashing	70
6.5  Lautering	73
6.6  Cooking	74
6.7  Hot break separation	76
6.8  Cooling	76
6.9  Pitching yeast	77
6.10  Fermentation	79
6.11  Secondary fermentation and storing the beer	80
6.12  Cleaning after the brewing process	81

7 Control of the brewing plant	84
7.1  Fundamentals of programmable logic controllers	84
7.2  S7-200 SMART	85
7.2.1  CPU S7-200 SMART SR40/ST60	85
7.2.2  EM AM06	86
7.2.3  EM AR04/AR02	86
7.3  Switch cabinet with basic functions	87
7.4  Switch cabinet for temperature control	89

8 Basics of network technology	92
8.1  Industrial Ethernet	92
8.2  OPC Foundation	94
8.3  OPC Technology	95
8.3.1  OPC Classic	95
8.3.2  OPC Unif?ied Architecture	97

9 Implementation of a LabVIEW program	99
9.1  Program interface	99
9.2  OPC Server software	100
9.2.1  Shared Variable Engine	100
9.2.2  DSC module	101
9.2.3  NI OPC Server	101
9.2.4  OPC tags	102

10 LabVIEW program—brewing plant control	106
10.1  Graphical user interface	106
10.2  Advanced Features	108
10.2.1  Dual control of the system via LabVIEW and control panel	109
10.2.2  Data Dashboard	111

11 Current temperature control system	113
11.1  Existing controller quality	113
11.2  Modif?ication of control valves and temperature sensor	115

12 Simulation of the mash tank’s temperature control	117
12.1  Controller design	117
12.1.1  Identif?ication of parameters	117
12.1.2  Basics of PID controlling	120
12.1.3  Fundamentals of Fuzzy control	123
12.1.4  PID controller design	128
12.1.5  Fuzzy controller design	130
12.2  Build-up of the simulation in LabVIEW	133
12.2.1  Representation of the controlled system	133
12.2.2  Program structure and functionality	134
12.2.3  Optimization of the simulated controllers	142

13 Implementation of the control system	146
13.1  Operation of the brewing plant	146
13.2  Experiments on the real system	147
13.2.1  Experiments with PI controller	148
13.2.2  Experiments with fuzzy controller	148
13.3  Comparison between simulation and reality	152
13.4  Further investigations	152

References	155

Appendix A 	157

Appendix B	159

Figures	160

Tables	167

发送电子邮件联系我们